Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7932, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575786

RESUMO

Chiang Mai encounters severe pollution during the wildfire season. Wildland firefighters encounter various hazards while engaged in fire suppression operations, which encompass significant exposure to elevated concentrations of air pollutants resulting from combustion, especially particulate matter. The adverse effects of wildfire smoke on respiratory health are a significant concern. The objective of this study was to examine the potential adverse effects of PM2.5 exposure on the respiratory function and DNA damage of wildland firefighters. This prospective cohort study conducted in Chiang Mai from January to May 2022 planned to evaluate the health status of wildland firefighters during the pre-peak, peak, and post-peak ambient air pollution seasons. The measurement of PM2.5 was done at every forest fire station, as well as utilizing data from the Pollution Control Department. Participants received general health examinations, spirometry evaluations, and blood tests for DNA damage analysis. Pair t-tests and multiple regression models were used to examine the connection between pulmonary function parameters (FVC, FEV1) and PM2.5 concentration, with a significance level of P < 0.05. Thirty-three peak-season and twenty-one post-peak-season participants were enrolled. Four pre-peak-season wildland firefighters had FVC and FEV1 declines of > 15%. Multiple regression analysis showed a negative association between PM2.5 exposure and FVC% predicted (- 2.81%, 95% CI - 5.27 to - 0.34%, P = 0.027) and a marginally significant negative correlation with FVC (- 114.38 ml, 95% CI - 230.36 to 1.59 ml, P = 0.053). The remaining pulmonary measures showed a statistically insignificant decline. There were no significant changes in DNA damage detected. Wildland firefighters suffered a significant decline in pulmonary function associated with PM2.5 exposure. Spirometry is crucial for monitoring and promptly identifying respiratory issues that occur during wildfire seasons. Further research is recommended to explore DNA damage alterations and their potential association with PM2.5.


Assuntos
Poluentes Atmosféricos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Bombeiros , Exposição Ocupacional , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Estudos Prospectivos , Fumaça/efeitos adversos , Fumaça/análise , Poluentes Atmosféricos/análise , Dano ao DNA
2.
Environ Pollut ; 293: 118488, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34793907

RESUMO

Size-fractionated particulate matters (SPMs) in a range of 9.0 to 0.43 µm, classified based on aerodynamic diameter (dae) as fine PMs (0.43 µm ≤ dae < 2.1 µm) and coarse PMs (2.1 µm ≤ dae < 9.0 µm) were collected by cascade impactors (7 fractions) during smoke haze (SH) and non-smoke haze (NSH) seasons in urban and rural areas of Chiang Mai, Thailand. Their polycyclic aromatic hydrocarbons (PAHs) compositions were determined for respiratory health risk assessment. During SH episode, concentrations of SPMs and PAHs in the rural area were approximately two times higher than in the urban area and about 62-68% of the SPMs were fine particles. Conversely, during NSH season the concentrations in the urban area were higher due to traffic emission. The finest particle sizes (0.65-0.43 µm) contained the highest PAHs concentrations among the other PM sizes. Benzo[b]fluoranthene was a main PAH component found during SH season suggesting biomass burning is a major pollutant source. High molecular weight (5-6 rings) PAHs with high carcinogenicity were likely to concentrate in fine particles. Distribution patterns of SPMs and PAHs during SH season were bimodal with the highest peak at a fine size range (0.65-0.43 µm) and a small peak at a coarse size range (5.8-4.7 µm). Respiratory health risk was estimated based on toxicity equivalent concentrations of PAHs bound-SPMs and inhalation cancer risk (ICR). Relatively high ICR values (1.14 × 10-4 (rural) and 6.80 × 10-5 (urban)) were found during SH season in both areas, in which fine particles played an important role. It revealed that high concentration of fine particles in ambient air is related to high respiratory health risk due to high content of carcinogenic substances.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Atmosfera , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...